Sasha Patotski

Cornell University

ap744@cornell.edu

November 29, 2015

Definition

If G, H are groups, a map $\varphi \colon G \to H$ is called a **homomorphism** if

$$\varphi(a * b) = \varphi(a) * \varphi(b)$$

For a homomorphism φ , necessarily $\varphi(e_G) = e_H$ and $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Definition

The **kernel** of a homomorphism φ is ker $\varphi = \{a \in G \mid \varphi(a) = e\}$ The **image** of a homomorphism φ is im $\varphi = \{\varphi(a) \in H \mid a \in G\}$

Definition

Two groups G, H are **isomorphic** if there is a homomorphism $\varphi \colon G \to H$ which is bijective. Such φ is called an **isomorphism**.

イロト 不得下 イヨト イヨト 二日

- Between any groups G, H there is a trivial homomorphism $\varphi: G \to H$, given by $\varphi(g) = e_H$, for all $g \in G$.
- There are no **nontrivial** homomorphisms $\mathbb{Z}/m \to \mathbb{Z}$.
- For any abelian group G, the map φ_m: G → G given by g → g^m is a homomorphism.
- The same map for **non-abelian group** is **not necessarily** a homomorphism.
- The group of symmetries of an equilateral triangle is isomorphic to S_3 .
- The group of orientation preserving symmetries of a regular *n*-gon is isomorphic to \mathbb{Z}/n .

Tetrahedron

Theorem

The group G of symmetries of a regular tetrahedron is isomorphic to S_4 .

- There is an obvious homomorphism $\varphi: G \to S_4$, sending a symmetry to corresponding permutation of vertices.
- It is injective: if a symmetry fixes all vertices, it must be the identity symmetry.
- Every transposition of neighbors is in the image $im(\varphi)$.
- But $im(\varphi)$ is a subgroup.
- Since S_4 is generated by these transpositions, $im(\varphi) = S_4$. Done.

Definition

$$(g,h)*(g',h'):=(gg',hh')$$

Definition

Let G, H be two groups. Define $G \times H$ to be the set of all pairs (g, h) with $g \in G, h \in H$. Define an operation * on it by

$$(g,h) * (g',h') := (gg',hh')$$

• Prove that $(G \times H, *)$ is again a group.

Definition

$$(g,h) * (g',h') := (gg',hh')$$

- Prove that $(G \times H, *)$ is again a group.
- It's called the product of groups G, H.

Definition

$$(g,h) * (g',h') := (gg',hh')$$

- Prove that $(G \times H, *)$ is again a group.
- It's called the product of groups G, H.
- Prove that the subsets G × {e} = {(g, e) | g ∈ G} and {e} × H are two subgroups of G × H, isomorphic to G and H respectively.

Definition

$$(g,h)*(g',h'):=(gg',hh')$$

- Prove that $(G \times H, *)$ is again a group.
- It's called the product of groups G, H.
- Prove that the subsets G × {e} = {(g, e) | g ∈ G} and {e} × H are two subgroups of G × H, isomorphic to G and H respectively.
- Prove that the two subgroups commute with each other.

Definition

$$(g, h) * (g', h') := (gg', hh')$$

- Prove that $(G \times H, *)$ is again a group.
- It's called the product of groups G, H.
- Prove that the subsets G × {e} = {(g, e) | g ∈ G} and {e} × H are two subgroups of G × H, isomorphic to G and H respectively.
- Prove that the two subgroups commute with each other.
- The natural projections G × H → G and G × H → H are homomorphisms of groups.

Definition

$$(g,h)*(g',h'):=(gg',hh')$$

- Prove that $(G \times H, *)$ is again a group.
- It's called the product of groups G, H.
- Prove that the subsets G × {e} = {(g, e) | g ∈ G} and {e} × H are two subgroups of G × H, isomorphic to G and H respectively.
- Prove that the two subgroups commute with each other.
- The natural projections $G \times H \rightarrow G$ and $G \times H \rightarrow H$ are homomorphisms of groups.
- The product of **abelian** groups is a again abelian.

• S_3 is not isomorphic to $A_3 \times \mathbb{Z}/2$ (can replace 3 by *n*).

< 67 ▶

э

• S_3 is not isomorphic to $A_3 \times \mathbb{Z}/2$ (can replace 3 by *n*).

< 67 ▶

э

- S_3 is not isomorphic to $A_3 \times \mathbb{Z}/2$ (can replace 3 by *n*).
- For odd *n*, the group $GL_n(\mathbb{R})$ is isomorphic to $\mathbb{R}^{\times} \times SL_n(\mathbb{R})$.

- S_3 is not isomorphic to $A_3 \times \mathbb{Z}/2$ (can replace 3 by *n*).
- For odd *n*, the group $GL_n(\mathbb{R})$ is isomorphic to $\mathbb{R}^{\times} \times SL_n(\mathbb{R})$.
- $\mathbb{Z}/4$ is not isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$.

- S_3 is not isomorphic to $A_3 \times \mathbb{Z}/2$ (can replace 3 by *n*).
- For odd *n*, the group $GL_n(\mathbb{R})$ is isomorphic to $\mathbb{R}^{\times} \times SL_n(\mathbb{R})$.
- $\mathbb{Z}/4$ is not isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$.
- $\mathbb{Z}/6$ is isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/3$ (can replace 2, 3, 6 by *m*, *n*, *mn* with relatively prime *m*, *n*).

Theorem

Let G be a group, and $H, K \subseteq G$ be two subgroups satisfying the following three properties:

- **1** $H \cap K = \{e\};$
- elements of H commute with elements of K, i.e. hk = kh for any h ∈ H, k ∈ K;
- G = HK, i.e. any g can be represented as g = hk with $h \in H, k \in K$. Then $G \simeq H \times K$.

Proof.

Theorem

Let G be a group, and $H, K \subseteq G$ be two subgroups satisfying the following three properties:

- **1** $H \cap K = \{e\};$
- elements of H commute with elements of K, i.e. hk = kh for any h ∈ H, k ∈ K;

• G = HK, i.e. any g can be represented as g = hk with $h \in H, k \in K$. Then $G \simeq H \times K$.

Proof.

Consider p: H × K → G defined by p(h, k) = hk ∈ G. This is a homomorphism.

Theorem

Let G be a group, and $H, K \subseteq G$ be two subgroups satisfying the following three properties:

- **1** $H \cap K = \{e\};$
- elements of H commute with elements of K, i.e. hk = kh for any h ∈ H, k ∈ K;

• G = HK, i.e. any g can be represented as g = hk with $h \in H, k \in K$. Then $G \simeq H \times K$.

Proof.

- Consider p: H × K → G defined by p(h, k) = hk ∈ G. This is a homomorphism.
- It is injective and surjective, and hence an isomorphism.

Theorem

The group G of symmetries of a cube is isomorphic to $S_4 \times \mathbb{Z}/2$.

